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A lifting surface of small aspect ratio is analysed for motion with constant forward 
velocity, parallel and in close proximity to a rigid plane surface of infinite extent. 
The gap flow beneath the lifting surface is represented by a simple nonlinear solution. 
in the cross-flow plane, and appropriate conditions are imposed at leading and trailing 
edges. The transition between these two conditions depends on the kinematics of the 
gap flow as well as the planform geometry. For steady-state motion of a delta wing 
with sufficiently large angle of attack, the transition point is upstream of the tail. 
For oscillatory heaving motion of a delta wing the transition point is cyclic if the 
heave velocity is sufficiently large. Illustrative computations of the lift force are 
presented. 

1. Introduction 
The analysis of lifting surfaces moving in close proximity to a ground plane is of 

practical importance in the context of high-speed ground-transportation vehicles, 
and also with respect to the interaction between a ship hull and an adjacent canal wall 
or second ship. Possible biological applications exist as well, particularly with respect 
to prosthetic heart valves, which are similar to those occurring in nature but with a 
small gap between the valve leaves and the artery. 

Restricting attention to a horizontal ground plane of infinite extent, and a lifting- 
surface geometry that is nearly parallel to this plane, a suitable inviscid model can 
be developed by extensions of classical thin-wing theory. If the clearance beneath the 
wing is small compared with the span and chord, the velocity field within the gap 
region is dominant and can be approximated by a governing differential equation 
analogous to the shallow-water approximation in water-wave theory. Widnall & 
Barrows (1970) exploit this simplification in a linearized steady-state analysis where 
the assumption is made that the angle of attack is small compared to the gap, but no 
restrictions are placed on the aspect ratio. Some unsteady extensions of the same 
theory are outlined by Barrows t Widnall(l970). 

A similar small-gap approximation is employed by Yih (1974) to analyse the 
dynamics of a falling plate, and to explain the cushioning effect when, for example, 
one pane of glass falls upon another. Since there is no linearization of the vertical 
displacement with respect to the clearance, the results are applicable to extremely 
small gaps. 

A more general study of the two-dimensional thin-wing problem has been made by 
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FIGURE 1. Definition of the co-ordinate system and lifting eurface 
in close proximity to the ground-plane z = 0. 

Tuck (1980), taking into account both unsteady motions of the wing and nonlinearity 
of the flow in the gap. Thus Tuck’s results, like those of Yih (1974) for the non-lifting 
case, can be applied to the regime where the gap is very small and the ground effect is 
‘extreme ’. 

The present work is directed toward a solution of the unsteady three-dimensional 
thin-wing problem in the case where the aspect ratio is small. This assumption is more 
restrictive than the corresponding works of Barrows and Widnall, but the resulting 
simplification makes it possible to include nonlinear gap effects in an analogous manner 
to Tuck’s two-dimensional study. The variation of clearance in the gap along the 
chord, due to the combined effects of camber, angle of attack, and vertical unsteady 
motions, is assumed to be comparable to the gap clearance itself. This nonlinear 
feature causes significant perturbations of the streaming flow in the gap region. In  
particular, the lateral deflection of streamlines is comparable to the span, and special 
attention is required to distinguish the appropriate portions of the planform boundary 
which correspond to leading and trailing edges. Transition between a leading and 
trailing edge will be shown to occur when the edge is tangent to the vector average 
of the velocity emerging from the gap and the adjacent velocity above the Wing 
surface. 

The analysis is performed for a wing of zero thickness, with small aspect ratio and 
small gap clearance. It is necessary to restrict the relative magnitudes of the two 
small parameters, such that the clearance is much less than the span. (In the comple- 
mentary case ground effects only cause a small perturbation of the classical low- 
aspect-ratio flow.) 

2. The boundary-value problem 
Non-dimensional Cartesian co-ordinates (x,y,z) are defined as in figure 1, with 

z = 0 the plane of the ground, and with the local elevation of the wing prescribed by 
z = {(x, t )  for 0 < x < 1. The nose of the wing is situated on the (positive) z-axis, and 
directed towards a uniform streaming flow (U, 0,O). The wing surface is bounded by 
symmetric edges y = +s(x), with the local semi-span s(x) required to vanish at the 
nose and to vary slowly along the chord except for a possible abrupt trailing edge a t  
the tail x = 1. 

Inviscid incompressible flow is assumed, irrotational except for thin vortex sheets 
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which are shed downstredm from the trailing edges. At such edges the pressure must 
be continuous in accordance with the Kutta condition. 

The fluid velocity field is expressed as the gradient of the potential Uz+ #(x, y, 2, t ) ,  

(1) 
where 

throughout the fluid domain, and the perturbation potential 9 is required to vanish 
at large distances from the wing and vortex sheets. The remaining boundary condi- 

(2) 
tions are that q5s = 0 on z =  0, 

9* = st + (U + 92) 6 on z = R% t ) ,  lsll < s(x). (3) 

9 2 2 + 9 V Y + 9 & &  = 0 

Following the geometrical msumptions outlined in $1, it is aasumed that 

S < S < 1  

for all relevant values of (x,t). Co-ordinate stretching can be used to establish an 
inner region (y,z) = O(s) where transverse gradients are dominant and, neglecting 
a factor 1 + O(s2), the perturbation potential is governed by the two-dimensional 

(4) 
Laplace equation 

9vv + #ti& = 0. 

Similarly, the boundary condition (3) can be linearized in the form 

9& = Q + u52 = W) on 2 = t ) ,  IYI < 8(4. (5 )  

This linearization can be confirmed for the gap region aposteriori, with the error factor 

In  the usual procedure of matched asymptotic expansions, this inner problem must 
be complemented by an outer region where three-dimensional effects are significant, 
and the solutions in the two separate domains are matched ultimately in an appro- 
priate overlap region. Matching is upecessary for the leading-order solution of the 
present problem, however, and the inner solution may be derived directly from two- 
dimensional arguments. The higher-order role of the outer solution is described in $5. 

1 + O(+, /U)  = 1 +O(S2). 

3. The leading-order solution 
For sufficiently small values of the gap elevation 5, the flow beneath the wing will 

dominate that in the exterior region. To confirm this statement, the perturbation field 
on the upper surface and elsewhere outside the gap is estimated as O(t;) in accordance 
with classical thin-wing theory. By comparbon, a (particular) solution for the flow in 
the gap beneath the wing is given by the potential 

where 

in accordance with the boundary condition (5) .  Note that (6) satisfies the boundary 
condition (2) and the two-dimensional Laplace equation (4). The additive constant 
Ws2 has been introduced in anticipation that the potential (6) should vanish at the 
edges of the gap. 
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A general solution for the velocity potential in the gap region follows from (6) in 
the form 

# = w(X, t )  (ZB+8* -9') 4- P(S, t ) ,  (8) 

where the complementary solution P(x, t )  is to be determined by imposing appropriate 
conditions at  the edges of the gap y = 2 8. 

Since the exterior perturbation is an order of magnitude smaller in [by comparieon 
with (S), and local solutions which match the gap and exterior flows we signiscant 
only within a distance O ( [ )  from the edges, the appropriate condition for the leading- 
edge portion of the gap is that 

This condition is satisfied by (6), neglecting a term of order f;8, hence P = 0 in the 
leading-edge domain. 

Trailing-edge conditions apply a t  the gap edges y = +s in certain circumstances 
(which will be determined below). In  this event, vortex sheets are shed, and convected 
downstream from the edges, and (9) must be replaced by the Kutta condition of 
continuous pressure. Since the perturbation field is of higher order above the wing, 
the pressure in the gap must therefore vanish at the trailing edges. 

The pressure field in the gap can be obtainebfrom Bernoulli's equation in the form 

# = o ,  Y = f S .  (9) 

P1P = - Qt - U # X  - I#;, 

~ p l p  = - D( W) (8' - y2) - WD(@) - 2 W%J' - D(P). 

(10) 

with the error a factor 1 + O([2/sB, s*). Substituting the general solution (8) ,  and setting 
z = 0, 

This pressure must vanish at the trailing edges, in accordance with the Kutta condi- 
tion, and an equation for the complementary solution follows in the form 

(11) 

DF = -2uwSS'-2wBS2. (12) 

The solution of (12), which is continuous with the leading-edge potential at a transi- 
tion point x = x*, is readily obtained in the form 

Here the retarded time r is defined by 

7 = t +  (E-X)/V. (14) 

The transition point x* is determined by noting that both the leading- and trailing- 
edge conditions are satisfied simultaneously if P(x, t )  and its derivative (12) both are 
equal to zero. This will occur in the leading-edge domain if the right-hand side of (12) 
vanishes, or if 

8'/8 = - w/u = - $([t + U Q ) / U [ .  (16) 

Assuming x* to be the fist (or only) such point along the chord, leading-edge condi- 
tions are applicable upstream of this position. 
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----___ 
FIG- 2. Planforms of lifting surfaoee with (a) abrupt trailing edge, (b)  swept trailing edge, and 
(c) combination of abrupt and swept trailing edges. Dashed lines denote typiml positions of the 
outboard edges of the trailing vorbex sheet. 

Equation (15) can be interpreted from the kinematic standpoint by noting that the 
y-component of the velocity at the edge of the gap is equal to 

#u l r f s  = -2W8. (16) 

Thus (15;) is satisfied if the slope of the streamline leaving the gap is twice the slope 
d ( x )  of the edge. Since the streamlines on the upper surface are unperturbed, this is 
equivalent to the statement that the mean flow a t  the edge is bngent to this edge. 
A leading-edge condition exists if the slope of this mean flow is algebraically less than 
.s’(x), but when the mean flow is directed outward vorticity is shed and convected in 
the same direction. Thus the appropriate distinction between the two types of edge 
conditions is that 

M u  ly- fe  >< U8’(4, (17) 

for a leading or trailing edge, respectively. Since ~ ( 0 )  = 0, leading-edge conditions are 
appropriate a t  the nose and upstream of the point x*. 

The point x* may or may not exist upstream of the tail, depending on the wing 
geometry. If an abrupt edge exists at the tail, and if the edge slope 8’ is sufficiently 
small in relation to the normal velocity on the wing, a trailing edge will exist only at  
the tail, as depicted in figure 2 (a). Figure 2 (b) shows the opposite situation of a pointed 
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FIGURE 3. Normalized lift-slope coeffloient for a planar delta wing with unit ohord length, 
base span al, base elevation C, and angle of attack a. 

tail with a( 1) = 0, where trailing edges will exist along a portion of the chord. In  the 
most general case both types of trailing edges may exist simultaneously, w shown in 

In certain caaes the trailing vortex sheets will be 'resorbed' at a subsequent down- 
stream leading edge, depending on the relative variation of the functions &) and 
W ( z ,  t ) .  It is straightforward to generalize the above results in this instance, subject 
to the requirement that the complementary solution P(z ,  t )  is continuous at  each sub- 
sequent transition point. An analogous situation is described by Newman & Wu 
(1973) for the unsteady swimming motions of a slender fiah. 

figure 2(c). 

4. The lift force and moment 

leading order by integrating the pressure across the gap, 
The differential lift force acting on a transverse section of the wing is obtained fo 

Substituting (1  1) for the leading-edge region with F = 0 gives the corresponding result 

Similarly, from (11) and (12), 

1 

P 
-9 = -+83D(w)+gW283 

for the trailing-edge region. 
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FIQIJRE 4. Centre of pressure (-) and tramition point z+ between leading 

and trailing edges (- - -) for a planar delta wing. 

The firat terms on the right-hand sides of (19) and (20) correspond to the differential 
lift on a slender wing in an unbounded fluid, if W is replaced by the normal velocity 
Dc, and 488 is replaced by the local added-maas coefficient. 
As a simple staady-state illustration we consider the motion of a planar delta Wing 

with constant angle of attack a. Thus 

8 ( 2 )  = m(1) = ml, 

C(x) = [(l)+u(l-z) = C1+u(1-z). 

(21) 

(22) 

X* = 25(0) /3~  25,,/3~. (23) 

For this case the transition position z* is determined from (12), 

For 01 > #&,, the transition position is upstream of the tail, approaching a limit point 
at x = 6 when the tail elevation tends to zero. For negative values of the angle of 
attack, the trailing edge is confined to the abrupt tail. 

The total lift force is obtained by substituting (21), (22) into (19), (20), and integrat- 
ing over the chord. Figure 3 shows the normalized lift-slope coefficient 

L 

for values of the ratio ./el ranging from - 1 (where the nose touches the ground) to 
+ 10. With this normalization, the lift-slope coefficient decreases from a maximum of 
1-25 where the nose touches the ground to unity at zero angle of attack, and to a 
minimum value of about 0.86 just after the transition position moves forward from 
the tail (at u/cl = 2). Thereafter the lift slope increases markedly, and the classical 
term ‘ram wing’ is applicable. Aa alel + 00, the normalized lift-slope coefficient is 
asymptotic to a value of 2-0. 

Figure 4 shows the corresponding results for the centre of p r e ~ s ~ ,  which moves 
downstream with increwing u/Q, from a position 8 of the chord length aft of the nose 
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FIQTJBE 5. Unsteady lift coefficient (26) u8. wt in the interval (0, 2n). The solid curves are for a 
sinmoidal heave amplitude equal to half the mean elevation and the broken curves are the 
corresponding linearized results. 

when the nose is touching the ground, to at zero angle of attack, and ultimately to 
a limiting position a t  the tail as a/yl --f 00. The transition position x* is shown also 
in figure 4 for values of the angle-of-attack ratio where this point is forward of the tail. 
When a/[l exceeds a value of approximately 3.7, the centre of pressure is in the trailing- 
edge region. 

These steady-state results contrast with the corresponding situation in an unbounded 
fluid, where the differential lift force vanishes in the trailing-edge region. In  the ground- 
effect problem, for large values of the ratio a/[l, the parameter W increases inversely 
with the diminishing gap clearance near the tail, and the pressure (1 1) associated with 
the leading-edge potential is dominated by the negative term - 2 Weyz. In  the trailing- 
edge regime this negative pressure a t  the edges is offset by an equal and opposite 
constant, in accordance with the Kutta condition, and a large positive pressure occurs 
inboard. Thus the total lift force increases with increasing a/&, and the centre of 
pressure moves toward the tail. 

The simplest unsteady problem is that where the elevation is a function only of time, 
5 = [ ( t ) .  In  this case leading- or trailing-edge conditions occur respectively according as 

where g' denotes the time derivative. For a falling delta wing, ifc'/[is sufficiently large 
and negative, trailing-edge conditions will predominate. The corresponding differential 
lift force (20) reduces to a form identical to that obtained by Yih (1974) for a falling 
two-dimensional flat plate. In  this situation there are no lifting effects associated with 
the stream velocity U. 
To illustrate the unsteady problem we consider sinusoidal heaving motion 

[ ( t )  = a+bsinwt (25) 
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of the delta planform defined by (21). In  this case the pressure can be integrated to 
give the lift coefficient in the form 

4 u  cos W2t +B cos2t 
(1 -8x"*. (26) -- cos wt - L 

&pgw2B- (1+Bsinwt)2 w X*(l+Bsinwt) (l+Bsinwt)a 

Here B = b/a is the ratio of the heave amplitude to the mean elevation. In  (26), the 
parameter x* is defined as 1 when the transition point is downstream of the trailing 
edge or, more generally, - 

1 w B  coswt - =max 1, -- 
x* ( 2Ul+Bsinwt 

For U = 0, x* = (0,l)  according as cos wt is negative or positive, respectively. 
The lift coefficient (26) is shown in figure 5, as a periodic function of time, for the 

linear limit B = 0 and for B = 0.5. Nonlinear effects are most apparent for U / o  = 0. 
There is a positive average value of the lift coefficient over the cycle equal in this case 
to 0.0774. For U / w  = 1, the forward velocity is sufficiently large to maintain the 
transition point at the tail; nonlinear effects are less apparent in this case, but the 
time-averaged lift coefficient is negative, and equal to - 0.1547 for B = 0.5. 

5. Discussion and conclusions 
The relatively simple solution described above is valid to leading order in the small 

Clearance 6. A consistent higher-order solution can be derived from the method of 
matched asymptotics, in an analogous manner to that indicated for the two- 
dimensional problem by Widnall & Barrows (1970) and by Tuck (1980). The essential 
ingredients of such an extension for the wing of small aspect ratio include (1) a continu- 
ation of the gap flow downstream to account for the wake beneath the trailing-vortex 
sheet, (2) local edge solutions valid near y = f s(z), and (3) an external solution valid 
throughout the remainder of the flow field including the upper surface of the wing. 

The wake solution downstream of the gap involves a straightforward extension of 
(€9, with continuity of the pressure at 2 = 1. The local edge solutions are described 
by Widnall & Barrows (1970) and can be decomposed into a particular solution with 
finite pressure at the edge, and a homogeneous source-like flow with the usual square- 
root edge singularity. Both components are required in general to treat the leading 
and trailing edges. The external solution consists of a planar distribution of sources on 
the wing and wake, including discrete sources along the leading edge. In  the low- 
aspect-ratio approximation this external solution takes the form of the longitudinal 
' thickness ' problem in slender-body theory, including two-dimensional logarithmic 
terms plus a three-dimensional interaction from the remainder of the body and the 
wake. The latter will introduce significant three-dimensional effects in the higher- 
order solution. 

Another possible extension of the theory is to include thickness of the wing. This 
has no effect on the leading-order solution, provided the clearance 6(x, t) is defined as 
the elevation of the lower surface of the wing. In the higher-order theory, the upper 
surface should be used to develop the external solution, and thickness will affect the 
local edge solutions if the radius of curvature at the edges is comparable with the 
clearance. 
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Leading-edge separation must be anticipated unless the angle of attack is limited 
relative to the span and thickness. In principle, the restriction y Q 8 should preclude 
leading-edge separation if a finite radius exists at the leading edges. In practice, how- 
ever, transition between the leading and trailing edges may depend as much on the 
local radius at the edge as on the global kinematics of the vortex sheets. 

The illustrative example of a planar delta wing considered in 5 4 can be generalized, 
and a wide variety of planforms, camber distributions, and unsteady motions may be 
analysed from the relatively simple leading-order solution in Q 3. Multiple transitions 
can occur between leading- and trailing-edge regions if the span 8(z) and elevation 
[(x, t )  are non-monotonic. 

This work was initiated during a stimulating visit with Professor E. 0. Tuck at the 
University of Adelaide. Financial support was provided by the National Science 
Foundation, the Office of Naval Research, and the Australian Research Grants 
Committee. 
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